TN-013

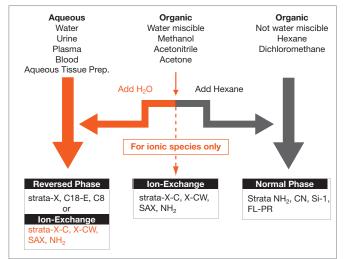
A Simple Approach to Fast and Practical Solid Phase **Extraction (SPE) Method Development**

Solid phase extraction is an effective technique for cleaning up and concentrating samples. In the following communication we outline a simple approach for solid phase extraction method development using Strata® SPE sorbents.

STEP 1. Sample Pre-treatment

Reproducible, high efficiency solid phase extraction requires that the sample be made liquid prior to loading onto a SPE device. The SPE sample should meet the following conditions:

- 1. Liquid of low viscosity (to pass through the cartridge).
- 2. Low solids or particulate contaminants (to prevent clogging).
- 3. Solvent composition that is suitable for retention (each mechanism has different matrix solvent composition requirements for proper retention).


Sample Pre-treatment Recommendations

Sample				
Soil, Sludge	Homogenize with organic or aqueous solvent depending upon analyte solubility. Settle, decant and filter supernatant; perform Soxhlet extraction.			
Ointments, Creams	Oil based: Dissolve in non-polar organic (hexane) and extract via polar SPE.			
	Water based: Dissolve in water or water miscible organic (methanol) and extract via non-polar SPE.			
Fruit, Vegetable, Herbs	Homogenize with organic or aqueous solvent depending upon analyte solubility and filter supernatant. Use appropriate SPE mechanism for the dissolution solvent (hexane = polar mechanism; aqueous = non-polar mechanism; methanol/ACN = either non-polar or polar after proper dilution).			
Biological Sample	es (liquid)			
Urine, Whole blood, Serum, Plasma, Bile, etc.	Dilute sample 1:1 with appropriate buffer, precipitate proteins if proteinaceous (ZnSO ₄ , ACN), hydrolyze urinary glucuronides, disruption of protein binding (sonication, enzymatic, acids/bases).			
Biological Samples (solid)				
Organ tissues, Feces, Gl contents	Homogenize with organic or aqueous solvent depending upon analyte solubility. Settle, decant, centrifuge or filter supernatant. Perform direct Matrix			

STEP 2. Selecting Strata Sorbents

Identify the possible SPE retention mechanism: Reversed Phase (RP), Ion-Exchange (IEX) or Normal Phase (NP):

The sample solvent composition will guide you towards an appropriate SPE mechanism.

Once the general mechanism is identified, it will be necessary to identify the most specific Strata sorbent by matching the analyte functional groups to the sorbent functional group.

SPE Mechanism	Analyte Functional Group	Sorbent Functional Group	Strata Sorbent	
Reversed	R hydrocarbon	hydrocarbon	C18-E, C18-U, C8	
Phase	aromatic	aromatic	X, PH, SDBL	
Normal	R - OH hydroxyl	CN polar	CN, NH ₂	
Phase	R - NH ₂ amino	OH polar	Si-1, CN	
Pos	NH ₄ ⁺ strong	COO - weak	X-CW, WCX	
lon-	NH ₃ ⁺ weak	SO - strong	X-C, SCX	
Exchange	SO - strong	NH3+ weak	X-AW, NH ₂	
Neg	COO - weak	NH ₄ ⁺ strong	SAX	

www.phenomenex.com

Phenomenex products are available worldwide. For the distributor in your country, contact Phenomenex USA. International Department by telephone, fax or email: international@phenomenex.com.

Solid Phase Dispersion (MSPD) extraction on tissue.

Ophenomenex

Australia tel.: 02-9428-6444 02-9428-6445 fax: phenomenex.com.au

	Ireland
tel.:	01 247 5405
fax:	+44 1625-501796
mail:	eireinfo@
	nhenomenex com

Austria 01-319-1301 01-319-1300 phenomenex.com

051 736176

051 735302

phenomenex.com

italiainfo@

phenomenex.com
New Zealand
09-4780951
09-4780952

Canada

(800) 543-3681 (310) 328-7768

phenomenex.co.n

Denmark 4824 8048 4810 6265 phenomenex.com

Puerto Rico
(800) 541-HPLC
(310) 328-7768
info@
phenomenex com

France 01 30 09 21 10 01 30 09 21 11

franceinfo@ phenomenex.com

United Kingdom

01625-501367 01625-501796 ukinfo@

phenomenex.com

Germany 06021-58830-0 06021-58830-11 anfrage@ phenomenex.com

(310) 212-0555 (310) 328-7768 info@ phenomenex.com

A Simple Approach to Fast and Practical Solid Phase Extraction (SPE) Method Development (cont'd)

STEP 3. Sorbent Mass Selection

To select the proper sorbent mass, it is first necessary to determine the volume of sample needed to be extracted in order to meet method detection limits (not including buffer). Two tables are included below: Polymer-based and silica-based. This is necessary because the large surface area of polymeric sorbents such as strata-X have a higher analyte capacity per gram than silica-based sorbents.

Suggested Loading Capacity

Table 1.

Polymer-Based Sorbents (strata-X, X-C, X-AW, X-CW and SDB-L)

Sample Matrix	Sorbent Mass
Blood, serum, plasma	30 mg sorbent per 250 µL
Urine	30 mg sorbent per 500 µL
Filtered tissue homogenates	60 mg sorbent per 100 mg tissue

Environmental Samples	Sorbent Mass		
Water (particulate-free) drinking	200 mg/100 mL sample		
Water (particulate-laden) rivers, runoff, etc.	500 mg/100 mL sample		
Soil Extracts	500 mg/100 g of soil extract		

Table, 2

Silica-Based Sorbents (strata C18-E, C8, SCX, SAX, WCX, NH₂, etc.)

Sample Matrix	Sorbent Mass
Blood, serum, plasma	50 mg sorbent per 250 μL
Urine	50 mg sorbent per 500 μL
Filtered tissue homogenates	100 mg sorbent per 100 mg
	tissue

Environmental Samples	Sorbent Mass
Water (particulate-free) drinking	500 mg/100 mL sample
Water (particulate-laden) rivers, runoff, etc.	1 g/100 mL sample
Soil Extracts	1 g/100 g of soil extract

Generic Method

Each SPE mechanism / phase has a general set of solvent conditions under which SPE may be performed. Use the solvents/pH conditions listed below, volumes as determined in Step 4.

STEP 4. Method & Sorbent Volume Selection

The volume of solvent needed for SPE processing is directly related to the mass of sorbent in the SPE tube and more specifically the "bed volume" of the SPE device. Intuitively we know more sorbent requires more solvent, less sorbent = less solvent. Typically 4 - 16 bed volumes are used in SPE methods.

Sorbent Wash and Elution Volumes*

Silica- Based Sorbent Mass	Practical Minimum Wash and Elution Volume 4 bed volumes	Recommended Wash and Elution Volume 8 bed volumes	Polymer- Based Sorbent Mass*	Practical Minimum Wash and Elution Volume 4 bed volumes	Recommended Wash and Elution Volume 8 bed volumes
10 mg	60 μL	120 µL	10 mg	100 μL	200 μL
_	_	_	30 mg	300 μL	600 µL
50 mg	300 µL	600 µL	_	_	_
_	_	_	60 mg	600 µL	1.2 mL
100 mg	600 µL	1.2 mL	100 mg	1 mL	2 mL
150 mg	900 µL	1.8 mL	150 mg	1.5 mL	3 mL
200 mg	1.2 mL	2.4 mL	200 mg	2 mL	4 mL
500 mg	3 mL	6 mL	500 mg	5 mL	10 mL
1 g	6 mL	12 mL	1 g	10 mL	20 mL
2 g	12 mL	24 mL		_	_
5 g	30 mL	60 mL		_	_
10 g	60 mL	120 mL		_	_

^{*} Strata polymeric resins have a larger surface area than Strata silica-based material, hence requiring slightly more solvent per gram for processing. The elution volumes are specific to the chemical nature of the analyte being extracted, its concentration in the sample, the chemical nature of the eluting solvent and the bed mass used. The above is a guideline. An elution study should be conducted to determine the appropriate volume to use.

Reversed Phase SPE Method Normal Phase SPE Method Strong Ion-Exchange SPE Method Anion exchange: SAX, X-AW Sorbent X, SDB, C18, C8, PH, CN Silica, Florisil, NH₂, CN Cation exchange: SCX, X-C, X-CW **Analyte Properties** Pharmaceuticals Pesticides, Herbicides, Low to moderate polarity Pesticides, Moderate to high polarity compounds, lonized/charged compounds (or non-polar) Hydrophobic Neutralized/uncharged (Neutralized/uncharged) Anion exchange: Acidic analytes Cation exchange: Basic drugs Sample/Matrix Biological fluids, Water, Aqueous, diluted with buffer Hexane, chloroform, petroleum ether, toluene or Biological fluids plus methylene chloride buffer Spec. prep **Conditioning Step** 1. Methanol 1. Methanol (optional) 1. Methanol 2. Water or buffer 2. Hexane or chloroform 2. 25 mM Tris-OAc, pH 7 Wash Step Methanol: Water (1:9) Hexane with 1 % THF, ethyl acetate, acetone, Anion exchange: Buffer pH 7: Methanol (50:50) acetonitrile or IPA Cation exchange: 1. Buffer pH 6 2. 1 M acetic acid 3. Methanol Hexane with 10 % THF, ethyl acetate, acetone, Flution Step Methanol: Acetonitrile: HCI (4:4:2) Anion exchange: Hexane: ethyl acetate (75:25) acetonitrile or IPA + 1 % glacial acetic acid Cation exchange: Methanol + 5 % NH₃

NOTE: These are general starting conditions. Please contact your Phenomenex technical representative or visit www.SPEhelp.com for more assistance.

A Simple Approach to Fast and Practical Solid Phase Extraction (SPE) Method Development (cont'd)

strata[™]-X Polymeric SPE Sorbents

- Clean extracts from biological sample matrices
- Streamlined method development and simple processing

Sorbent	Functional Group	Mode	Analyte	
strata-X	, o =	Reversed Phase	Polar and Non-Polar	
strata-X-C	0 = s - o	Reversed Phase and Strong Cation Exchange	Bases	
strata-X-CW	\$\frac{1}{2} \cdot \frac{1}{2}	Reversed Phase and Weak Cation Exchange	Bases (including Quarternary Amines)	
strata-X-AW	The NH NH2	Reversed Phase and Weak Anion Exchange	Acids	

Visit www. **StrataSPE.com** for samples, method development tools, technical support, technical guides or product information.

Strata® SPE Sorbents

- SIFALA
 trom phenomenas

 DIFALA

 DIFALA
- Extremely reproducible from batch-to-batch
- Formats for large and small volume samples

Reversed Phase

C18-E

Extraction of hydrophobic molecules from aqueous and biological samples

C18-U

 Increased extraction efficiency and enhanced clean up of hydrophobic compounds that contain hydroxy or amine functional groups from water or biological fluids

C18-T (wide pore)

 Extracting large hydrophobic molecules (up to 75 kD) from water or biological matrices

C8

 Extracting hydrophobic compounds from water or biological fluids that are retained too strongly on Strata C18-E or strata-X

Pheny

• Extracting aromatic hydrophobic compounds

CN

 Extracting non-polar, compounds that are retained too strongly on Strata C18-E or C8

SDB-L (styrene-divinylbenzene)

· Extraction of non-polar and polar molecules

Normal Phase

CN

 Normal phase sorbent that can effectively extract polar compounds from non-polar solvents

NH

Extraction of strong anions from aqueous samples

EPH (Extractable Petroleum Hydrocarbon)

 Fractionation of Aliphatic and aromatic extractable hydrocarbons from soil and water samples

Silica

· Extraction of polar compounds that are similar in structure

Florisi

• Extraction of pesticides from environmental samples

Cation Exchange

WCX (weak cation exchange)

· Extraction of quaternary amines

SCX (strong cation exchange)

· Extraction of 1°, 2° and 3° amines from biological fluids

Screen-C (mixed-mode cation exchange)

 Extraction of basic drugs from biological matrices such as blood, serum and urine

Anion Exchange

WAX (weak anion exchange)

· Extraction of strong ions from aqueous solvent

SAX (strong anion exchange)

Extraction of organic acids

Screen-A (mixed-mode anion exchange)

 Extraction of acidic drugs from biological matrices such as blood, serum and urine

ABW (specialty phase)

 Fractionation of neutral compounds such as amides from acidic and basic analytes

TN-013

A Simple Approach to Fast and Practical Solid Phase Extraction (SPE) Method Development (cont'd)

PRODUCT INFORMATION

Tubes	1 mL (10	00/box)	3 mL (50/box)			6 mL (30/box)			
Silica-based sorbents									
Phase	50 mg	100 mg	100 mg	200 mg		500 mg	_	500 mg	1 g
C18-E	8B-S001-DAK	8B-S001-EAK	8B-S001-EBJ	8B-S001-FE	3J 8	B-S001-HBJ	_	8B-S001-HCH	8B-S001-JCH
C18-U	_	8B-S002-EAK	_	8B-S002-F	3J	_	_	8B-S002-HCH	_
C18-T	_	8B-S004-EAK	_	8B-S004-FE	3J 8	B-S004-HBJ	_	8B-S004-HCH	8B-S004-JCH
C8	_	8B-S005-EAK	_	8B-S005-F	3J 8	B-S005-HBJ	_	8B-S005-HCH	8B-S005-JCH
Phenyl	_	8B-S006-EAK	_	8B-S006-FE	3J 8	B-S006-HBJ	_	_	8B-S006-JCH
SCX	_	8B-S010-EAK	8B-S010-EBJ	8B-S010-FE	3J 8	B-S010-HBJ	_	8B-S010-HCH	8B-S010-JCH
WCX	_	8B-S027-EAK	_	8B-S027-FE	3J 8	B-S027-HBJ	_	8B-S027-HCH	8B-S027-JCH
SAX	_	8B-S008-EAK	8B-S008-EBJ	8B-S008-F	3J 8	B-S008-HBJ	_	8B-S008-HCH	8B-S008-JCH
NH_2	_	8B-S009-EAK	_	8B-S009-F	3J 8	B-S009-HBJ	_	8B-S009-HCH	8B-S009-JCH
CN	_	8B-S007-EAK	_	8B-S007-FE	3J 8	B-S007-HBJ	_	8B-S007-HCH	8B-S007-JCH
Si-1	_	8B-S012-EAK	_	8B-S012-FE	3J 8	B-S012-HBJ	_	8B-S012-HCH	8B-S012-JCH
Florisil	_	_	_	_	8	B-S013-HBJ	_	8B-S013-HCH	8B-S013-JCH
Mixed-mode so	orbents (for drug	s of abuse)							
Phase	_	_	_	_	50	0 mg	200 mg	500 mg	1 g
Screen-C GF	_	_	_	_	8B-S0)26-HBJ	8B-S026-FCH	8B-S026-HCH	8B-S026-JCH
Phase	_	100 mg	100 mg	150 mg	200 mg	300 mg	150 mg	500 mg	-
Screen-C	_	8B-S016-EAK	8B-S016-EBJ	8B-S016-SBJ	8B-S016-FBJ	8B-S016-RBJ	8B-S016-SCH	8B-S016-HCH	_
Screen-A	_	8B-S019-EAK	_	_	8B-S019-FBJ	_	_	8B-S019-HCH	_
Polymeric sorb	ents								
Phase	_	100 mg	_	200 mg		500 mg	_	500 mg	1 g
SDB-L	_	8B-S014-EAK	_	8B-S014-FI	3J 8	B-S014-HBJ	_	8B-S014-HCH	8B-S014-JCH
Phase	30 mg	_	60 mg	200 mg		500 mg	100 mg	200 mg	500 mg
strata-X	8B-S100-TAK	_	8B-S100-UBJ	8B-S100-F	3J 8	B-S100-HBJ	8B-S100-ECH	8B-S100-FCH	8B-S100-HCH
strata-X-C	8B-S029-TAK	_	8B-S029-UBJ	8B-S029-FI	3J 8	B-S029-HBJ	8B-S029-ECH	8B-S029-FCH	8B-S029-HCH
strata-X-CW	8B-S035-TAK	_	8B-S035-UBJ	8B-S035-FI	3J 8	B-S035-HBJ	8B-S035-ECH	8B-S035-FCH	8B-S035-HCH
strata-X-AW	8B-S038-TAK	_	8B-S038-UBJ	8B-S038-FI	3J 8	B-S038-HBJ	8B-S038-ECH	8B-S038-FCH	8B-S038-HCH

Strata is a registered trademark of Phenomenex, Inc. strata-X is a trademark of Phenomenex, Inc. Copying or re-use of this information is not allowed without written permission from Phenomenex. © 2007 Phenomenex, Inc. All rights reserved.

Contact Phenomenex for more information on product offerings and FREE samples.

www.phenomenex.com
Phenomenex products are available worldwide. For the distributor in your country, contact Phenomenex USA, International Department by telephone, fax or email: international@phenomenex.com.

Australia fax:

tel.: 02-9428-6444 02-9428-6445 email:

info@ phenomenex.com.au

tel.: 01 247 5405 fax: +44 1625-501796 eireinfo@ phenomenex.com

Austria 01-319-1301 01-319-1300 anfrage@ phenomenex.com

051 736176

051 735302

phenomenex.com

italiainfo@

New Zealand 09-4780951 09-4780952 info@ phenomenex.co.n

Canada

(800) 543-3681 (310) 328-7768

info@ phenomenex.com

Denmark 4824 8048 4810 6265 dkinfo@ phenomenex.com

> **Puerto Rico** (800) 541-HPLC (310) 328-7768 info@

phenomenex.com

01 30 09 21 10 01 30 09 21 11 franceinfo@ phenomenex.com

France

ukinfo@

United Kingdom 01625-501367 01625-501796

phenomenex.com

Germany 06021-58830-0 06021-58830-11 anfrage@ phenomenex.com

(310) 212-0555 (310) 328-7768 info@ phenomenex.com